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ABSTRACT

The present paper is concerned with the analysis of temperature time data from
diathermic-chemical liquid reactions. In addition, mathematical methodsarc described
for calculating the activation energy and the frequency factor from the observed
temperature--time relation.

I. INTRODUCTION

In the determination of rate constants in a kinetic model on the basis of ex-
perimental data, the complexity of the model indicates the approach. The problem
is rclatively casy to solve when the kinetic model is sufficiently simple as shown by
Dammers and Frankvoort!- %,

Apart from the just mentioned differential method, the analytical integration of
the differential equation canlead to simnple objective functions in the regression analysis.

However, when the model is complex and the number of differential equations
increases, only numerical methods can handle the difficulties.

As alrcady shown? determination of kinetic constants in semi-adiabatic systems
gives two alternatives of solving the problems. The one in which a perfectly adiabatic
reaction calorimeter is used, is not considered here. The other deals with the numerical
treatment which considers the small corrections resulting from the deviations from
adiabaticity?.

The objective of this paper is to develop a computational program for the
estimation of parameters in ordinary differcntial cquations.

Considering the fact, that temperature (measured at equidistant times) is the
only detected variable, the problem can be formulated by requiring that:

N

S(par) = z (—ri,zxp - 7:‘_:.1!)- n
i=1

should be minimized with respect to the parameters. The entire problem can be

separated into two major parts: the computation of the temperatures 7; ,, and the

method used to minimize S(par).



Because of the Iarge number of data-points, both phases of the problem require
considerable computer facilitics. Programs have been written in Algol-60 for the
CDC-73-28 (sce section 2). The program is illustrated with a few examples from the
literature in section 3. In section 4 we introduce the measuring method and the
reaction used. Finally we discuss the results and method in section 5.

3. THEORETICAL PART

2_1. Basic eguations

The system under consideration can mathematically be stated by*—?
%{; = {(t, y, par) 0t (95
0, par) = y, &)

where J{f,par) is an n-vector, par is an m-vector of constant but unknown parameters
and 7 denotes time.

We assume that f, cf/oy, cffcpar, y and éy/cpar are continuous in y and par
and piece-wis2 continuous with respect to 1. The experimental values are denoted by
§5(1), an n-vector related to the state by

$(1) = y(f,par) + ¢ )

where € is an #-vector of errors.
Our aim is to find a set of parameters minimizing the quadratic function S(par)
defined by:

Stpar) = [ 450 — 3ts, pang3 a )
0

where }{o|]. denotes the euclidian-norm given by:
fof> “='(c*0)* (6)

The asterisk stands for the transposition. Using an integration procedure to solve
y(#,par) we can minimize S(par) using standard techniques.
Because the observations are made only at discrete times we must replace (5) by:

N
S(par) = __El G(t) — (1, pan)? )

To find the {inal least squares estimate par we must satisfy the normal equations
(m-cquations)'®:

N
3, 6@ — 5(0. A - {M}= 0 ®

6par; . Jpar=gar
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-~

forj=1,2...m.
The n X m matrix 3y(t,par)/épar can be evaluated by numerical differentiation®-°

or by solving the set of finearized differential equations3—6

ayYp

—— = FP + FY-YP; YPO) = 0 (%)

where

yp = 9y, par)
dpar

Fy = 9 y, par) (10)
oy
Fp = 51t y. par)
épar
As shown in the next section we prefer the last method because we can integrate
simultaneously eqns (2) and (9) owing to the similarity of the jacobians of both
systems>* °.

2.2. The integration method

We tried to combine several features of the predictor—corrector-linear multistep
integration methods developed by Adams ct al.”. Our goals are to realize the following
demands:

(a) variable step size

(b) realising a robust procedure if possible

(c) handling normal and stiff systems of differential equations

“(d) sirmnultapcous integration of eqns (2) and (9).

Using Adams-Moultop-Bashford methods for integrating dy/dr = f{{(z,y,par

the corrector-predictor procedure can be written as®: 7+ ' 2:

(m+ 1) = a¥ + c h (I - hﬁ")_l (r(f, m)> par) - (nl)y,) (ll:
and
@y =Y+ (= BT (KL, oy, par) — mp) (12

where A is the stepsize used, ¢ and B are functions of ¢ and J (=~ ¢f{t,y,par)/dy) is the
jacobian of the system. (., ; y¥ and (., 1,V are improvements of _y and ,)’, respec
tively. For the integration of eqn (9) we find a similar set of equations as written in (11’
and (12). In each step we solve first eqns (11) and (12) iteratively and then eqn (9
by substitution of ¢, i and (I — AfJ)*, the same factors used in (11) and (12). The
Adams~Moulton~Bashford methods and the Curtis—Hirschfeider methods can tx
implemented in such a way that one can switch during the integration from normal t«
stiff differential equations” 2. All these features are not implementablc in a2 norma
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Runge-Kutta integration method. Finaily, we will state that the matching in time
with the data points is realized by Newton interpolation of the temperature with the
same order of the stability polynomial in the numerical integration rather then by
stepsize matching during the integration.

2.3. The minimmi-ation procedure

To find the least squares approximation of par in S(par) we have to fulfill the
condition &S(par)/épar = 0. It is not possible to solve the parameters directly
because of the non-linearity of the equations. So we have to iterate from a given
starting point to the minimum of the function S(par).

Using the method suggested by Marquardt®- #- 12- 13=20 we can write for
normal equation:

J*J +2D4 = J*(§(e) — e, par)) (13)

where 7 is a real constant chosen in each iteration in accordance with several rules, /
is the identity matrix and 4 is the correction on the parameters

bari*t = parf 4 4 (19)

When 2 = 0 eqn (13) gives a pure Gauss-Newton correction. For 2 —+ oo the algo-
rithm tends to a steepest descend correction. It is shown!'>: '®: 2° that therc exists
a /2 < o for which

S(par’ + A’) < S(par’) (15)
and there exists also a 2 > o2, such that

S(par’ + A% > S(parf) (16)
where 62 is the smallest singular value of J*J. This means there exists at least one

2

7, viz. o_;, < 2 < oo, at which the inequality (15) is fulfilled. There are several
procedures for calculating 4'7—29%- '4- 15_The one we use is the following. We take
the condition number p of the matrix J*J as an initial guess for 2, given by

% = alfa - 62, [02;a. (17)

where alfa is a user definable correction factor. If the correction 47 on the parameters
is accepted we replace 2/ by:

' =beta- 2’ (18)

where beta is a user definable reducing factor. If the correction 47 is not accepted we
replac= ;5 by:

M = 10- 47 (19)

On approacning the minimum, the minimization method of Marquardt lecads to the
Gauss-Newton method and 2/ forms a decreasing sequence in subsequent iterations.
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Starting with an initial guess 2% we find the first correction on the parameters by
A° = (¥ + 5D I%h (20)

where b == §(t) — 3(r,par). This equation might be solved by inversing (J*J 4 2°I).
We can, however, avoid these difficulties by using the singular-value decomposition
method*>.

If Jis a real m X n matrix we can write:
J = UIV* (21a)
where YUU* =1 and VV* = Iand (2IB)

(21c)

and o; are the singular values. Substitution in eqn (20) gives for the j-th iteration by
dropping the indices:

4=V + D" "ZU*b (22)

The iterative algorithm based on these principles is the following:
(a) gucss parameter alfa: 2% =: alfa - 62, /62, and par®
(b) given par’, determine par’*! by performing the following steps:
(1) solve the singular-value decomposition for J
(2) solve eqn (22) for 44
(3) solve S(par’ + 47)
(4) if S(par/ + A%) < S(par’) then par’*' = par’ -i- 47;
ii%' = beta - 27; go to (1)
clse 27*Y — 10 - 24; go to (2).

2.4. The complete program

As we can see in Fig. 1 we always perform a complete integration of eqns (2)
and (9) except when condition (15) is not fulfilled. Then eqn (19) is used to change 2
in order to meet condition (15). Subsequently we have to make one complcte in-
tegration of (2) and (9) together for the new singular-value decomposition. During the
whole calculation we avoid 1 to decrease the value of 62 .

It is neither necessary nor useful to start with the same tolerance on the in-
tegration we need at the end. So we change it during the calculation. We found it
useful to introduce some restrictions on the values of the paramecters (dictated by
physical conditions), which mcans that the parameter values are checked against user
definable boundaries. The program can produce information about boundaries
constraint jumps, the values of parameters, 2 and the least square sum, S(par), all
during the iterations.

In Appendix 1 we give the heading of the minimization procedure including
the meaning of the formal parameters. The procedure will be available on microfilm.
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3. TEST EXAMPLES

We used threc examples to test our program. The first and the last are of our
own?, the other is the one given by Bellman et al_2!_ In diathermic reaction calori-
metry the system is described by the two differential equations:

dT 0 dm hA W, dm — T,
— TS = e — —— —— —_— -4 -="- —_——_—— = - ——2 2
de c, dt c. (T—To+ c. di 2 m" exp ( T ) (23)

For a detailed description sec refs. 1 and 2. In here Q/c,, Z, and T, are unknown
parameters, to determine in the minimization and n, h4/c,, T_ and W fc_ arc known
constants. Using the values mentioned in Table 1 we calculated an exact T.r-data sel.

TABLE 1

VALUES OF VARIABLES USED IN CALCULATING T, I-DATA SET

T =0) = 278000 K Qlcp - 115 K kg mol-!
Te = 278.000 K hAlce ~ 1.6-10 551

Ta = 9000.00 K Wefca = 4.3 -103K 5!

m((@ =0) = 20 molkg'! 4 = 5 -1 s

With this data set and some starting values for the parameters we minimized
S(T,. Z.., Q/c,) with the results tabulated in Table 2.

TABLE 2

RESULTS OF THE MINIMIZATION OF EQN (23) WITH THE DATA SET BASED ON THE VALUES FROM TABLE 1

Parameter Starting values Final values

Ta 9.200000 - 103 9.0000002 - 10¢ K

Zy 4.500000 - 10" 5.0000038 - 1011 g-1}

Qles 1.800000 - 10* 1.7500000 - 10! K kg mol-!
S(par) 2.788 - 10? 2403 -10!= K2

We used for this minimization 17 integrations of eqns (2) and (9) together and
zero integrations of eqn (2) alone. The calculations started with 2 = 1.205 - 10 and
finished, monotcneously descending, with 2 = 3.677 - 10— 2.

Bellman et al.?' give an example of the reversible homogencous gas phase
reaction

Ky
2NO + O, 2 2NO,
ky
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with data of Bodenstein and Lindner?2.
The descriptive differential equation has the form

L = k@ = b — 3 — k¥ 29

where a == 126.2 and b — 91.9 and k, and k, the rate constants to be estimated. The
results are tabulatzd in Table 3 including the results of Bellman®*' and Hemker>.

TABLE 3

RESULTS OFf THE MINIMEZATION OF EQN (24) WITH THE DATA SET OF BODENSTEIN AND LINDNER

Parameter Siarting values Final_ values

Ours Bellman Hembker
kx 1.000 - 10-€ 457-10 ¢ 4577 - 10°¢ 45-10 ¢
k= 1000 - 10-% 2.78- 10"t 2797 - 103 2.7-10-%
Stpar) 4.08% - 107 219 210 »0

We started the calculations with a 2 of 2.83 - 102 and finished after five integra-
tions of egns (2) and (9) together and zero integrations of eqn (2) alone with a ;i of
3.53 - 107.

The third example deals with the equation appearing in perfectly adiabatic
reaction systems. Frankvoort and Dammers? showed that for the n-th order adiabatic
reaction the rate of temperature change is given by

dT . T, -
-J'-=Z.(T_— .I')'cxp(— T) 25)
where

; . ,"o ] a2—1

= 26)

The importance of this equation lies in the simultaneous determination of all the
kinetic parameters. Using the values mentioned in Table 4 we calculated an exact
T.1-data set.

TABLE 4

VALUES OF YARIABLES USED IN CALCULATING AN EXACT 7, -DATA SEY

T( = 0) = 2.780000 - 103 K n = 1.000000 —
Ta - 9.000000 - 10° K T == 3.130000 - 10° K
Za = 5.000000 - 10** mol kgt s? m (r -- 0) -- 2.000000 mol kg1
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With this data set and some starting values for the parameters we minimized
S(T,Z,,n) with the results tabulated in Table 5.

TABLE 5

RESULTS OF THE MINIMIZATION OF EQN (25) WTIH THL DATA SET BASED ON THE VALUES FROM TABLE 4

Parameter Starting values Final values

Ta 9.200000 - 10° 9.000004 - 10 K

Za 4.500000 - 101! 5.000064 - 10*: s-t
n 1.000000 1.000001 —
S{par) 1.224 - 16* 2.529 - 10-1 K=

We used for this minimization 27 integrations of eqns (2) and (9) together and
zero integrations of eqn (2) alone. The calculations started with a 2 of 3.359 - 10¢
and finished with a Z of 9.454 - 10— %,

4. EXPERIMENTAL PART

The reaction calorimeter used for the present measurcments is the one described
in our previous article? (section 2.2). We started with two separated liquid mixtures.
Sulphuric acid in the double-piston injector with a concentration of ten times the
desired reaction concentration and a methyloxirane-water mixture in the covering
dewar-calorimeter. After temperature equilibration, the two liquids are mixed and
the temperature is written down as a function of time. The temperature is recorded
digitally at equidistant times by means of a Hewlett-Packard quartz thermometer with
a HP-2580-D sensor and punched on paper-tape with an TTY-SRT-33. Most
measurements have been conducted with a resolution of 10~*K. The temperatures
are correcled for the non-linearity and the response delay of the sensors.

As mentioned in section 2.3 we need starting values for Qfc,, Z, and 7,. The
first one is calculated using thermodynamic data?3—23_Z_and 7, are calculated using
the methods outlined in our previous article? (section 4). The number of data points
is between 150 and 200.

5. RESULTS AND DISCUSSION

Working with the minimization procedure we develop a fecling for the choice
of the starting valuc of 2 and its reducing factor. Our experience gives us the conviction
that better selection criteria should be developed in estimating a reliable value of 7,.

The suggestion of Davies and Whitting'” to estimate 2 from local information
of the function used sounds very promising. We used therefore their estimation-
function for 2 in the Bellman-problem. We found a 2., of a factor of about 10*
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higher than the one we found to be optimal. Our impression is that for refztively
ill-conditioned problems, like the ones of Bellman and our own, this equaiion does
not fulfill the expectations.

In saving a lot of troubles scaling is a major job to do. Both the first problem
and the last arc scaled by taking the natural logarithms of the parameters. The
equations in the first test problern alter in

ar dx hA W,

a9r " exp (par;) T —?—(T—' T) + . (27)
dx - .

—ar " exp (par.) x"exp (— exp (par,)jT) (28)

where

exp({par,;) = T, = EF/R
explpar) = Z,
explpars) — (Qmg)lc,

The number of iterations given in section 3 are based on these scaling. We used
these kinds of scaling because the unscaled problem converges very slow and does not
reach the minimum after 100 iterations. The scaled problem converges to the known
minimum as shown in 19 iterations. The same holds for the third test problem. In
our previous article? different values are found for reactions with an initial concentra-
tion of 1 mol kg™ " in comparison with a concentration of 2 mol kg—'. As shown?
this discrepancy results mainly in the difference in reaction-time and thus the course
of the heat transfer. In case eqn (23) is a good description of the behaviour of the
reactor dvnamics. there is no reason for difierent values for the 1 and 2 molar reaction
runs. Most reaction equations are of the Arrhenius type but the Eyring type is even
a useful description.
The reaction equations for the Arrhenius and Eyring type are, respectively:

dm ) - ~T,
(mT)= - —— =Z m"exp (—-,I—_—) 29)
and
dm - N
(im, T) = -——E;——PTm cxp( T )
The rate of change of the temperature is given for both equations by
aT o hA A
_d_l——c_,'(m‘T)—_c:-(T— T) + . 0)

The reaction under consideration is the acid-catalysed hydrolysis of methyloxirane?.
From two sets of each 15 experiments with an initial temperature of about 278 K, a
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pH of about 1.0 and initial reactant concentrations of about 1.0 and 2.0 mol kg—!,
respectively, the average values of 7,, Z,, P, O and k, are summarized in Table 6.

TABLE 6

EXPERIMENTAL KINLTIC VALUES OF THE HYDROLYSIS OF METHYLOXIRANE (eqns 29 and 30)

Parameter* Arrhenius equation Eyring equarion

! mol kg-! 2 mol kg-! I mol kg! 2mol kg-V"
Ta 8877 :42 8827 : 23 Ta 8587 =44 8540 - 22
Zs (70 -:13)-101' (69 --1.2)-10v P (1.04 -::0.17) - 10® (9.1 -=1.5)-10%
Q 86.4 =40 88.8 =40 Q 863 :40 88.6 =40
k= (25°C) 0.082 =0.015 0.096-:.0.017 k= (25°C) 0.097-:0.025 0.099 0016

* The dimensions of Ta, Z=, P,Qand kzare K, kgmol s ! kgmot t K-} s-1_kJ mol-!, kg mol-1
s, respectively.

The residual vectors of all calculations showed no satisfactory random pattern.
but rather a periodical phenomenon. A further investigation of the experimental
conditions gives the opportunity to distinguish the following facts:

(1) owing to change in chemical composition of the reaction mixture both the
heat capacity and the viscosity will change;

(2) owing to the change in temperature both the heat of reaction. the heat
capacity and the viscosity will change:

(3) owing to a number of varying surrounding conditions, like periodical
changes in the temperature of the thermostatted bath, there are changing heat transfer
conditions of the reactor.

The change in viscosity and mass density has an influence on the heat of stirring
and the heat transfer. All these effects are connected to the following rate of tempera-
ture change

a7

. . g . W, hA
dr (-_-'- (+BDyr(m, T) +

w— T (T-- T) + Bsin(o1) 3n
The term (1 -+ BT) stands for the effects in @ and ¢, and f sin(wr) for the effects in
viscosity change, e.g., the change in the heat of stirring and the cflect in heat transfer
change to the fluctuating surroundings.

it turned out that the cffect of the factor B is verv small, its value is of (3.35 =-
0.01) - 10— for all the experiments. The valucs for ff and  fluctuated from experiment
to experiment but the values for f were of about 4- 1072 t0 7- 10~ K s™! (2 mol
kg="andof I - 10~*to 4 - 10~* K s~ ! for the 1 mol kg—! runs and for w, for all
experiments, between 2 - 1072 and 2 - 10—* s,

The results of these calculations gave a fairly random pattern for the residual
vectors. The values of the kinetic parameters are listed in Table 7.
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TABLE 7

EXPERIMENTAL KINETIC VALUES OF THE HYDROLYSIS OF METHYLOXIRANE BASED ON EQN (31)

Paramerer” Arrhenius equation Eyring equation
T ol kg1 "% mol kg1 7 mol kg1 2 mol kg1
Ta 8826 =42 8804 - 1I8 T. 8556 +-29 8520 =15
L (597 =090)- 10! (56 =10)-10 P 85 Z1.1)-108 (7.3 =~1.3)-10%
(0] 84.7 =40 89.8 =40 Q 849 =40 90.1 =40
k= (25°C) 0.083+0012 0.084:£0.015 kx(25°C) 0.087:20.011 0.085 =0.015

* The dimensions are mentioned below Table 6.

The S(par)values of the cziculations in Table 7 based on eyn (31) are in
comparison with those i Table 6 a factor 50 to 1000 lower. The values of S(par) of
calculations on corresponding experiments of the Arrhenius and Eyring equation
gave no significant difference. Putting all experiments together we find the values for
the acid catalysed hydrolysis of methyloxirane mentioned in Table 8.

TABLE 8

Parameter” Arrhenius Eyring

Ta 8803 = 28 Ta 8534 = 23

Z= (59 =14)-101 P (80 =1.6)-10%
Qo 884 =28 0 883 =27

k= (25°C) 0089 = 0.020 k=(25°C) 0.088 - 0017

* The dimensions arc mentioned below Table 6.

The advantage of using the Eyring type equation is the possibility of calculating
the activation entropy of reaction by the relation

kg AS
[ —— ) 32
P h exp( R ) 32)
where kg = 1.380662 - 1023 J K—!

A = 6626176 - 107 3% J g1
R = 8.71441 Jmol—"' K™!

ky and h are the constants of Boltzmann and Planck, respectively. Using for P the
value from Table 8 we find an activation entropy of

45 = — 27.1 -+ 1.5J mol™! K—*

Although the method is very computer-time consuming the results are fairly good
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compared with the literature. Long et al.?® gave the following results (0.05 to 0.2

molair)

T. (Arrhenius) = 9392 Z, = 2.12- 102
T, (Eyring) = 9100 P =266-10°
k (25°C) = 0.044 45 = — 117.1

The dimensions are mentioned below Table 6.
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NOMENCLATURE

A heat transfer surface area

cp average specific heat capacity

Cy heat capacity

E cnergy of activation

h overall heat transfer coefficient

k., pseudo reaction rate constant

m molalility of reaction solution

mg initial mo!alility of reaction solution

n reaction order

P frequency factor in the Eyring equation
o heat of reaction (positive for cxothermic rcactions)
R gas constant

r(m,T) reaction rate

AS reaction activation entropy

t time

T absolute temperature of reacting mixture
T, initial temperature of reacting mixture
T, activation energy temperature

T, ambient temperature

y maximum adiabatic reaction temperature
W, heat of stirring

2z frequency factor in the Arrhenius equation

modified frequency factor
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APPENDIX §

The procedure: described in section 2 has the following heading with the
meaning of the parameters given after that. The procedure has the value of S(par) at
the end of the calculations.
real procedure parestinde (npar, ndata, neqn, cobsi, in, realin, obs, par, partest,

o " callystart, calldfdpar. callderiv, calljac, stiff, residu, invers, jac, out,
outdzis);
value npar, ndata. neqgn. cobsi. in, realin, partest, obs;

integer npar, ndata, neqn, cobsi;

;:r;;-in, realin, partsst, out, obs, par, residu, invers, jac;
boolean stiff:

boolean procedure calljac:

procedure outdata, calldfdpar, callderiv, callystart;
The meaning of the formal parameters is

npar {arithmetic expression); the number of unknown parameters;
ndata {arithmetic expression); the number of observations: ndata > npar;
neqn {arithmetic expression): the number of diflerential equations:
cobsi {arithmetic expression); the component of ) observed (I <cobsi< nean);
in {2rray identifier) ; array in [0:7];
entry: in this array data should be given to control the
process:

in[0]: machine precision;

in[ 1']: the relative tolerance for the euclidian norm of
the residual vector:

in[2]: the absolute tolerance of the euclidian norm of
the residual vector:

in] 3]: the maximum number of jacobian evaluations;

in[4]: the factor alfa to calculate the starting value of
lambda, a suitable valuc is 10—%;

in[5]: the reducing factor beta to reduce lambda, a
suitable value 1s 0.5;

in[6}: on the way change of integration precision if
j{residuel] <in[6]:

realin {array identifier) ; array realin [1:6];
cnlry: in this array control data for the inicgration
procedure should be given;
realin{1]: starting value of the time;
realin[2]: final value of the time;
realin[3]: minimal integration step, a suitable valuec is

realinf4]*107;
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realinf4]: maximal integration step, a suitable value is the
time step between two observations;
realin[5]: the initial relative local error bound for the
integration, a suitable value is in{1]:
realinf{6]: if liresidue]] <in{6] then the relative local error
bound is equal to realin[6], a suitable valuc is
inf1]*10—%;
obs {array identifier) ; array obs] I:ndata, l:negn=1};
entry: contains the expenmental observations;
obs{1,j]: is equivalent with v[j];
obs{i,neqn -2 1]: is equivalent with time:
par {array identifier) ; array parf I:npar];
entry: ;!_:;rt-i_ng values of the parameters;
¢ait: the calculated parameters:
partest {array identifier) ; array partest| :npar, 1:3];

entry: :nformation about boundaries for the para-
meters should be given;
partestfi.1]: lower bound of parameter i:
partest[i,2]: new value of parameter i when boundary is
crossed:
pareest]i,3]: upper bound of parameter i
callystart  {procedure identifier) ; procedure callystart (y, ynp, ymax);
arr:;y _y,- -y-(-lp. ymax:
exit: y[1:6 x neqn], y[1] to y[neqn] contains the
starting vafues of y;
vnp]0:7, 1:negn X npar], ynp}0, 1] to ynpfO.
neqn X npar | contains the starting values for the
integration of dyp/dx:
ymax[l:neqn), vmax[i} should contain an
estimate of the absolute maximal value of y[i]
over the integration interval;
calldfdpar <{procedure identifier} ; procedure calid{dpar (dfdpar, par y, x);

array dfdpar, par, y; real x;
entry: -;;z—:;[:_l :nipar] contains the current values of the
parameters:
y{1:ncqn] contains the solution of the differ-
ential equation at time x:
exit: armay dfdpar|l:neqn, I:npar]. this array con-

tains the values dfdparfi,j]} := d(dy[i}/dx)/
d(par[3}]);

PP TR
P B
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calldeniv

calljac

stift

residu

mvers

jac

out

{procedure identifier) ; procedure callderiv (df, par, v, X);
;r;yif.ﬁpar. y; real x;
entry: aalldfdmr, o
cxit: array dif L:negn}; dffi}:— dy[i}/dx;

{procedure identificc) ; boolcan proccdun: calljac (jacobian, par, y, x);

an'ay jacoblan. par, y; rea! X
entry: secc calldfdpar
cxit: array jacobian {1:neqn, 1:neqn]:
jacobian[i.j}:= d(dy[i}/dx)/dyLi}:
the boolean procedure should deliver the value
truz after a successfu) call of calljac;

{boolean i1dentifier) : when we are dcaling with stiff differential
equation stiff should be true;
{array identifier) ; array residuef I:ndata};

exit: residuf1:ndata] contains the residue vector at
the calculated minimum, residufi]-= observed
v[i]— calcalated y{i};
{array identifier) ; array invers[1:npar, I:npar];
exit: the invers of J*J is stored in invers, this matrix
is necessary fo calculaic the covariance and
correlation matrices:
{array identifier) ; array jacf 1:ndata, I:npar]};
exit: the matrix jac contains the jacobian in the
calculated minimum, jac[i,jJ:= d{rv[i})/
dpar[j]; should be used by calculating the
value of the gradicnt in the minimnm;
{array identifier) array out [1:9]:
divers by-products of the calculations are
stored in the array out;
out[1]: the condition number of J*J;
out[2]: the euclidian norm of the residual vector
calcuiated in the minimum;
out[3]: the last improvement of the residual vector;
out[4]: the euclidian norm with the starting values of
the parameters;
out[5]: the number of calls of procedure funct (eqn 2
alone);
out{6]: the number of calls of the procedure jacobian
{eqn 2 and 9);
out{7] =: O normal termination;



outdata

out[8]
out[9]

{procedure identifier}

exit:

pointer

pointer

pointer

pointer

array[ — 1]
arrayf - 1]

array[ —2]-
array] —3}:
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= [ number of iterations to perform exceed
in [3];

= 2 the call of jacobian delivers the value false;
== 3 the first call of jacobian delivers the value
false:

‘= 4 the precision asked for cannot be attained,
reduce in[2];
= 1 a call of funct dchivers the value false;

= I a call of the integration procedure delivers
the value false;

procedure outdata (pointer, integer, real 1,
real :‘!:1_1';213;):

integer pointer, integer; real real 1, real 2;
array array; o

th-is"procedurc can be used to obtain informa-
tion during the integration. There are four
places where output is activated;

= ] after a successful call of funct integer gives
the number of calls. real 1 gives the used
lambda, real 2 gives the value of S(par), array
gives the used parameter array;

—= 2 after a successful call of jacobian integer,
reat 1, real 2, array: sec pointer —=1;

— 3 after a paramcter bound jumps the
rejected vaiue and its substitute integer is the
number i of par[i] which is rejected, real | is the
rejected value, real 2 is its substlitute, array is
the parameter array;

== 4 after a failure in the integration procedure
the following information is available, integer,
rcal 1 and real 2 are zero, array contains the
following;

== O no error messages available;

= | minimal step length (realinf3]) too great
to handle the non-linearity;

number of local error bound exceedings:

if array] —2] # O this gives an estimate of the
maximal local error;
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