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ABSTRACT 

The present paper is concerned with the analysis of temperature time data from 
diathermic-chemical liquid reactions. In addition, mathematical methodsarcdcscribcd 
for calculating the activation energy and the frequency factor from the observed 
temper-turc-time relation. 

I_ INTRODUCTIOS 

In the determination of rate constants in a kinetic model on the basis of cx- 
pcrimental data. the complexity of the model indicates the approach. The problem 
is relatively easy to solve when the kinetic model is sufficiently simple as shown by 
Dammers and Fnnkvoort” ‘_ 

Apart from the just mcntioncd differential method, the analytical inteRration of 
the differential equation can lead to simple objective functions in the regcssion analysis. 

However, when the model is complex and the number ofdiffcrenti~l equations 
increrrscs, only numerical melhods can handle the difficulties_ 

As already shown’ determination of kinetic constants in semi-adiabatic systems 
gives two alternatives of solving the problems. The one in which a perfectly adiabatic 
reaction calorimeter is used, is not considered here_ ‘The other deals with the numerical 
treatment which considers the small corrections resulting from the deviations from 
adiabaticityz_ 

The objective of this paper is to develop a computational program for the 
estimation of parameters in ordinary differential equations. 

Considering the fact, that tcmperaturc (measured zt equidistant times) is the 
only detected variable, the problem can be formulated by requiring that: 

(1) 

should be minimired with respect to the parameters. The entire problem can be 
separated into two major parts: the computation of the temperatures Ti.,,l and the 
method used to minimize S(par). 



Bacausc of the large number of data-points. both phases of the problem require 
considerable c;omputer facilities- Progmms have been written in A&01+0 for the 
CDC-73-28 (xc section 2)_ The program is illustrated with a few examples from the 
literature in seztion 3_ In section 4 we introdua the measuring method and the 
reaction used, Finally we discuss the results and method in section 5. 

2, THE0RiXiCE.L PART 

31_ ihsic equalions 

The system under consideration can mathematically bc stated by’-’ 

AQ pa0 = Yl, (3) 
where &,par)l is an n-vector, par is an m-vector of constant but unknown panmeters 
and r dcnotcs time_ 

We assume that f, 2f/Zy, c’f/Zpar, y and Z:/c”par are con!inuous in y and par 
and piece-w& continuous with n?spect to f_ The experimental values are denoted by 
J<t), an rr-vec~r rclaced to the state by 

$(I) - J(t, par) + E (4) 

where c is an rr-vfxtor of errors. 
Our aim is to find a set of parameters minimizing the quadratic function S(par) 

defined by: 

r 

S(par) - I a$@) - ~(t. par)jf dr (5) 
n 

where jlollz denotes the euclidian-norm given by: 

flus, d:r(G+G)’ (6) 

The asterisk stands for the transposition. Using an integration pr&cdure to solve 
J<t,par) we cztn minimize S(par) using standard tcchniqucs. 

BeMusc the observations arc made only at discrctc tima we must rcplacc (5) by: 

S(par) = iiI (Hi) - I<& par))’ (7) 

To find the linal least squares estimate G we must satisfy the normal equations 
(~-cquations~)‘“: 
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forj= 1,2...m. * 
Then x m matrix~~~~,par}~~parcan beevaluated bynumeriuldifferrntiation**~ 

or by solving the set of Iinearizcd difkrmtial equations3-6 

d Y3J 
- = FP + FY - ‘YP; 

dr 

where 

I-f(O) = 0 (9) 

Wh Y, par) KY=- .-- -- 
ilj- UO) 

As shown in the next section WC prefer the last method because we can integrate 
simultaneously eqns (2) and (9) owing to the similarity of the jacobians of both 

system?- 6. 

We tried to combine several features of the prctlictor-corrru;tur -linear multistq 
integration methods devefopcd by Adams ct al. ‘I Our goals tlrc to realize the following . 
demands: 

(a) variable step size 
(b) realising a robust procedure if possible 
(c) handling normal and stiR systems of differential equations 

_ (d) simultaneous intcgntion of eqns (2) and (9). 
Usins Adam~~oulto~-~ashford methods for integrating d_&-/dr = f;(z,~,par: 

the corrector-predictor procedure can bc written as3w ‘* I ‘: 

(m+l)Y = _y f ch(l- WY’ W. ,P. pa0 - tmjf) (111 

and 

<r i r,Y’ = nYC +- U - WI- * W, lly, par) - caky’) (1% 

where h is the steps& used, c and /3 are functions of I and J (-: c”f(r,y,par)[G)l) is the 
jacobian of the system. (., + r p and cm* r 9 are improvcm~n~ of _y and J, respect 
tively. For the integration of eqn (9) we find a similar set of equations as written in (I I: 
and (12). In each step we solve first eqns (11) and (12) i~ratively and then cqn (9 
by substitution of c, h and (1 - /.rflJ)-‘, the same factors used in (1 I) and (12)_ The 
Adas~~Moultoil-~~lford methods and the Cn~i~~i~~fe~der mattes can k 
implemented in such a way that one can switch during the integration from normal tc 
stiff differential equations ‘- ’ * . At1 these features are not implementable in a norma 
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Runge-Kutta integration method. Finaily, we will state thait the matching in time 
with the data points is realized by Newton interpolation of the temperature with the 
same order of the stability polynomial in the numerical integration rather then by 
stepsize matching during the integration. 

23 The minihiztztion procedure 
To find the least squares approximation of pai in S(par) we have to fulfill the 

condition ZS(:par)lZpu = 0. It is not possible to solve the parameters directly 
heuuse of the non-linearity of the equations_ So we have to iterate from a given 
starting point to the minimum of the function S(par). 

Using the method suggested by tMarquardL’* ‘- lo- ‘3--2o we can write for 
normal cquztion: 

(PJ +~a)4 = J’cw - JO, Pm (W 

where i. is a real constant chosen in each iteration in accordance with several rules, I 
is the identity. matrix and 4 is the correction on the parameters 

pati*’ = parj f A (14) 

When il = 0 eqn (13) gives a pure Gauss-Newton correction. For i -, a the algo- 
rithm tends lo a steepest descend correction. IL is shown I ‘- “- ‘O that there exists 
a i < co for which 

S(pari + A’) < S(pa& (15) 

and there exists also a 2. > &,_ such that 

S(par’ -i Aj)l > S(pa#) (I9 

where G’ =;,,_ is the smallest singular value of J+J. This means there exists at least one 
2, viz. CT:;, -E i- -z 00, at which the inequality (15) is fulfilled. There are several 
procedures for calculating j_‘i--20- I’. Is_ The one we use is the following. We Lake 
the condition number P of the matrix J*J as an initial guess for 2, given by 

-0 
A. z alfa _ G.~,_/b~i~_ (151 

where alfa is. a user definable correction factor_ If the correction A’ on the parameters 
is acccptcd we replace i,’ by: 

-jiI /. = beta. - i.’ W3) 

where beta is a user definable reducing factor_ If the corrcztion 4 i is not accepted we 
replae i.j by: 

j_jl Z _= lo-i,i (IS)) 

On approa&ing the minimum, the minimization method of Marquardt leads to the 
Gauss-Newton method and Aj forms a decreasing sequence in subsequent iterations. 
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Starting with an initial guess 2’ WC find the first correction on the parameters by 

A0 =- (PJ + i”i)-’ J+h vo 

where b -= J<t) - &.par)_ This equation might be solved by inversing (J*J i i.Ol). 

WC can, however, avoid these difiicuities by using the singular-value decomposition 
method * ‘_ 

If J is a rcai m x n matrix we can write: 

J = UEVf (2!ah _ 

where L/U* - I and VP = I and (2ib! 

and bi are the singular values. Substitution in eqn (20) gives for the&th iteration by 
dropping the indices: 

A = V(Z’ + 1.1)-I C Ukb (22) 

The iterative algorithm based on that principles is the following: 
(a) guess parameter aifa: i-O -2 aifa - G~JG~~~_ and par’ 
(b) given pari, determine par’+ ’ by performing the following steps: 

(1) 
(2) 
(3) 
(4) 

solve the singular-value decomposition for J 
solve eqn (22) for Ai 
solve S(par’ f A’) 
if S(parj f Aj) < S(par’) then par’ ’ ’ = par’ -i- A’; 
j-i+ 1 ~ beta - 2’; ~0 to (I) 
eisc: A’+ 1 - IO - 2; go to (2). 

2.4. The complete program 

As we can see in Fig. 1 we always perform a complete integration of cqns (2) 
and (9) except when condition (15) is not fullNed_ Then eqn (19) is used to change i. 
in order to meet condition (IS). Subsequently we have to make one compietc in- 
tegration of (2) and (9) together for the new singular-value decomposition. During the 
whole calculation we avoid 3. to decrease the value of af,, _ 

It is neither necessary nor uscfui to start with the &ne tolerance on the in- 
tegration we need at the end. So we change it during the calculation. We found it 
useful to introduce some restrictions on the values of the parameters (dictated by 
physical conditions), which means that the panmcter values are checked against user 
definahie boundaries. The program can produce information about boundaries 
constraint jumps, the values of parameters, i. and the least square sum, S(par), all 
during the iterations. 

In Appendix 1 WC give the heading of the minimization procedure including 
the meaning of the formal parameters. The procedure will be available on microfilm. 
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I IwPUT EXP DNA : IHIT.VALUES: ETC. 1 

IYTECEIATE EQ-!2) AHD (9) _ 

I 

F&L I. Row diagram of tk tlgcnithm. 



3. TEST EXAMPLES 

We used three examples to test our program. The first and the last are of our 
own2, the other is the one given by Bellman et al_ “_ In diathermic reaction calori- 
metry the system is described by the two diITercntia1 equations: 

4T -= 
dr 

(23) 

For a detailed description see I&S. 1 and 2. In here Q/c,, Z, and ‘f= arc unknown 
parameters, to determine in the minimization and n, IJA/c,, 7, and WJc, arc known 
constants. Using the values mentioned in Table I we calculated an exact T,r-data sez. 

TABLE I 

VALUES OF VARIABUS L!D IS CALCUlATINc, T. I-DATA SET 

---.---_-- .-. ._ . . -_ -- -_ _. __ - - .- . ..-.-_ - .- -._ .-. - _-.-. _..__ --_--_- 

T (I - 0) = 278.000 K QICP ‘:. 17.5 K kg mol- ’ 
T, = 278.OIXl K hA/c, .-- IA- 10 55.1 
7.1 -9000.00 K w.;c, .= 4.3 - IO-’ K s- ’ 
m (I s 0) =_ 2.0 mol kg-.’ z, ; 5 - 10” 5’ ’ 

- --- --.-_- .----- -.--_-- __-_--__--- -----_.--__ 

With this data set and some starting values for the parameters we minimized 
S(T_ Z,. Q/tP) with the results tabulated in Table 2. 

TABLE 2 

_-_--.--B-m-.- ----- .-_-_.-_ ._. . . ---_ ,- _ __ _..__ _ .__ _._ 

Ptuamr cr Starring ualucs Fiml values 
-- --- -- . - __ ._. -_ -__- .._._ - ___- .__ .- _-_-._- _- -_-_ -_- .-- - -_ 

7s 9.a - I@ 9.oooooO2 - IO K 

SC, 
4.5aJam - IO” mmoo38 - IO” s-1 
lI3alaIo - IO’ 1.7Moooo - 101 K kp,mol-1 

S(pad 2788 - IO’ 3.403 - IO-” K’ 

- - - - .-- --- - --_..-__- -.-------------- --. -- --- -------- 

We used for this minimizAion 17 integrations of eqns (2) and (9) together and 
zero integations of eqn (2) alone. The calculations started with i. --. 1.205 - IO3 and 
finished, monotoneously descending, with R = 3.677 - 10m2. 

Bellman et al.” give an example of the reversible homogeneous gas phase 
Fact ion 
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with data of Etodenstein and Liudner’2. 
The descriptive differential equation has the form 

dy 
- = k, (a - y) (6 - y)= - k2 y2 
dr (24) 

where a =-: 126.2 and 6 2.. 91.9 and k, and k, the rate constants to be estimated_ The 
results arc tabulated in Table 3 including the results of Bellman” and Hemke?. 

TABLE 3 

RESULTS (w THE Mlu1.411LGSTiO~ OF EQS (24) WITH THE DATA SF3 OF BODESClEW A%D USDNER 

______.____.___.--_.-_.---_--.----_----. -... . -- -. _-- -___-_-_-_. _-__ 

Par~Icr Sl or tirpe values Fird dues .-_ . . - . .__. __ _._.. --.__.- ___. ___. - ._._. .- _..._ 
OWS Beihuln Hefnker 

__- -_-. .._._ __ _.__. - _-__- -- -...._-__ -._ --.---- - . - .- . -- - .-_. -_. _. .__ _____.__ 

kl lmo - 10-c 4.57 - IO 6 4.577 - IO.6 4.5 - IO l 

k+ IJm - lo-, 2.78 - IO-’ 2.797 - IO-’ 2.7 - IO-’ 
%=O 4_ow - IW 21.9 21-o -r-,0 -. 

______--_-.__ -- --- -- . . . - -_. . - - -- -- - - _ ._-_ -- _-_____ 

We started the calculations with a i- of 2.83 - IO* and finished after five integra- 
tions of cqns (2) and (9) :ogether and zera integrations of eqn (2) alone with a I of 
3.53 - IO’. 

The third example deals with the equation appearing in perfectly adiabatic 
reaction systems. Fnnkvoort and Dammers’ showed that for the n-th order adiabatic 
reaction the rate of temperature change is given by 

-g=Z_(T_- :rr exp - + ( 1 
where 

The importance of this equation lies in the simultaneous determination of all the 
kinetic parameters- Using the values mentioned in Table 4 we calculated an exact 
T,f-data set. 

VALLXS OF VARIABUS USED I?i CAlccLA-rnsG AS EXACT T. I-DATA sx 

--_--_-_____.___ ,- _- ---_._-- .--_ -._ _-- ._-_. 

T(r =- 0) - 2780000 - 101 K R =t.ouam - 
7-a ; 9_000000- IO’K 7, =- 3_13ocoo - IO’K 
2. = 5_OUJOOO - 10” mol kg-l s-’ m(r .-- 0) -- zoooooo maI kr’ 
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With this data set and some starting values for the parame!ers we minimized 
S(T,,Z,,n) with the nsults tabulated in Table 5. 

TABLE 5 

. .._ -_ . - ._._ I__. . . . ..,.. .,- -. __.. __. _  ____., --.- -__.. -_-- __..-_._.--_ ---- 

i%wmmctl?r Sfrzrtiffg dues Finai K&US 
_-__- _.__.., -. -_ . .--. .- -..- . _ _.... . -___ __- _ -__ . . _._ - 

7-k 9.z%mam - 18 9.tBXIOO4-101 K 
Z. 4saNIaI - 10” 5.oooo64 - IO” s- ’ 

%=> 
1_OOWOO 1.ooooo1 - 
t-z% - 1W 2.529 - tC?-” Kz 

-_ . . . _--- ____ _ _..... _ __ . . . . __. . _ .._ ___ . . ._ .I__ -- ._ ..-_ . ..-.. -_I 

We used for this minimization 27 intcgtations of cqns (2) and (9) together and 
zero integrations of eqn (2) alone. The calculations started with a I_ of X359 - IO6 

and finished with a i. of 9.454 - IWc. 

The reaction calorimeter used for the present measurements is the one described 
in our previous article’ (section 2.2). We started with two separated liquid mixtures. 
Sulphuric acid in the double-piston injector with a concentration of ten times the 
desired reaction con~nt~tion and a methyloxi~ne-water mixture in the covering 
dewar-calorimeter. After temperature equilibration, the two liquids are mixed and 
the temperature is written down as a function of time, The temperature is recorded 
digitally at equidistant times by means of a Hewlett-Packard quartz thermometer with 
a HP-2580-D sensor and punched on paper-tape with an TTY-SRT-33. Most 
measurements have been conducted with a resolution of lr3K. The temperatures 
are corrected for the non-Iinearity and the response delay of the sensors. 

As mentioner.i in section 2.3 we nrxd starting values for Q/cp. 2, and TS- l-he 
first one is calculated using therm~ynamic dataz3 -z5_ ZB and Ta are calculated using 
the methods outlined in our previous article’ (section 4). The number of data poinls 
is between 150 and 200. 

5. 

Working with the minimi~tion procedure we develop a feeling for the choice 
of the starting value of i. and its reducing factor. Our expcricnec gives us the conviction 
that better selection criteria should be developed in estimating a reliable value of 2,. 

The suggestion of Davies and Whitting * 7 to estimate 1 from local information 
of the function used sounds very promising_ We used therefore their estimation- 
function for 1. in the EMman-problem. We found a RmI, of a factor of about IO4 



higher than :!he one we found to be optimal. Our impression is that for relatively 
ill-conditioned problems, like the ones of Bellman and our own, this equation does 
not fulfill the expectations- 

In saving a lot of troubles scaling is a major job to do. Both the first problem 
and the fast arc scaled by taking the natural logarithms of the parameccrs. The 
equations in the first test problem alter in 

d-T ____ - _ 
dt 

dx 
- -dr 

- - exp (par2) _Cexp (- exp (par, jjT) 

(27) 

(28) 

The number of iterations given in section 3 are brrsed on these scaling. WC used 
these kinds of scaling because the unscaled problem converges very slow and does not 
reach the minimum after IGO iterations. The scaled problem converges to the known 
minimum as shown in 19 iterations. The same holds for the third test problem, In 
our previous articie2 different values are found for reactions with an initial concenlra- 
tion of I mol kg-’ _ In comparison with a concentration of 2 mol kg-‘. As shown’ 
this dixrepncy results mainly in the diflerence in reaction-time and thus the course 
of the heat transfer. In c,ase eqn (23) is a good description of the behaviour of the 
reactor dynamics. there is no re.wn for different values for the 1 and 2 molar reaction 
runs_ Most r-e;iction equations are of the Arrhcnius type but the Eyring type is even 

a useful description. 
The rractiofi equations for the Arrhenius and Eyring type are, respectively: 

and 

r(m_T)= --$= P Tm’exp +5 
( ) 

The rate of change of the temperature is given for both equations by 

The reaction under consideration is the acid-catalysed hydrolysis of methyloxirane*_ 
From two sets of each 15 experiments with an initial temperature of about 278 K, a 
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pH of about I.0 and initial reactant concentrations of about 1.0 and 2.0 mol kg-‘, 
respectively, the average values of ‘r;, Z,, P, Q and k, are summarized in Table 6. 

TABLE 6 

_ -.- ._ ._.- . ..-----mm-. . ..- -.--- -. -.. __._ . . . - . . . . . . . _ _., _... -. _.._..__ -.. __ 

Pprrrmrrer * Arriicnius cquarivn &~-ring cquarion ._... .._ ..-._ . . . . . . . ..-.,-. . _ ..- 
I mol kx-’ Zmolk.Q’-’ . I tnol kg” 2’ 4 kg- 1 

--. ---_.- -._- ._.__ ..,.. .- .._._ -.___._---_. .a--- - .- .- - . . - . . . - . . . . _ . 

7-l. 8877 .;:42 8827 .i 23 7.. 8587 k44 8S40:22 
Z= (7.0 -I: 1.3) - IO” (6.9 .:- 1.2) - IO” P (I.04 -):0.17) - IO’ (9.1 +.r.s) - 1w 

86.4 ::. 4.0 
kQ, (25-C) 0.082.;0.015 

88.8 k4.0 
0.096~~.0.017 f= (25’C) ~&I;:;:& 

88.6 L 4.0 
0.099 ::0.016 

_.____.. --- .-.- ._--.. . . - --- . . . . . _ _ . . - . . ._.-. _._..-.---..- - . _ _._ . . _. . . ._ 

l The dimensions of 7,. &, P. Q and kt, arc K. kg mol I s I. kg mol 1 K-1 s-l_ U mol-1. kg mol-1 
s-l, rapactively. 

The residual vectors of all calculations showed no satisfactory random pattern. 
but rather a periodical phenomenon. A funher investigation of the experimental 
conditions gives the opportunity to distinguish the following facts: 

(I) owing to chansc in chemical composition of the reaction mixture both the 
heat capacity and the viscosity will change; 

(2) owing to the chan_Se in temperature both the heat of reaction. the heat 
capacity and the viscosity will change; 

(3) owing to a number of varyins surrounding conditions, like periodical 
changes in the temperature of the thermostatted bath, there are chaneins heat transfer 
conditions of the reactor. 

The change in viscosity and mass density has an influence on the heat of stirring 
and the heat transfer. All these effects are connected to the following rate of tempera- 
ture change 

dii -.... =. _- 
df 

(T -- T,) i /I sin &,I) (31) 

The term (I -+ RT) stands for the eficcts in Q and c,, and /I sin(rtir) for the effects in 
viscosity change, e.g., the chanse in the heat of stirring and the effect in heat transfer 

chanse to the fluctuating surroundings. 
It turnexl out that the cffcct of the factor R is very small, its value is of (3.35 2 

0.01) - IO-’ for all the experiments. The values for j? and CD fluctuated from experiment 
to experiment but the values for p were of about 4 - IO-’ to 7 - IO-’ K s-.-I (2 mol 
kg-‘) and of I - IO-’ to 4 l IODJ K s-’ for the I mol kg-’ runs and for w, for all 
experiments, between 2 - IO-’ and 2 - IOWJ s--‘. 

The results of these calculations gave a fairly random pattern for the residual 
vectors. The values of the kinetic parameters art: listed in Table 7. 



TABLE 7 

~(PLELIWEXTAL KIT&C VhAJES OF THE HYDROLYSES OF UfZHYLOXIRASii RASU) OX EQN (31) 

Paranker Arrhenius equali& Eyritxg equmrbn m-m------ --_--__ 
I nwl kg-’ ~Zmdkg~ - I mlkg” 2 mol kg-1 

G 
yw g&-j,_ I*” (T r:“, _ 1011 2 

8556 6s 8520 &I5 
22 

89.8 ;4:0 
(8.5 + 1.1) - ItY (7.3 -k-1.3) - 1cF 

g (25’c) r&:G* 
Q 81.9 54.0 W-1 i4.0 

0.0&I :fO.OlZ kt (ts’c) 0.087,0.011 0.css5~0.015 

----e- ._-. ____--------_ ..-- .- ----.--- --.- .-...- -_ -- - 

l The dimstsiom axe rnmtionui below Table 6. 

The S(p&values of the caiculations in Table 7 basert on cqn (31) are in 
comparison with those 4_Table 6 a factor 50 to 1ooO lower. The values of S(par) of 
calculations on corrt=+ondlng experiments of the Arrhcnius and Eyring equation 
gave no significant difference_ Putting all experiments together we find the values for 
the acid catalyzed hydrolysis of methyloxinne mentioned in Table 8. 

TABLE 8 

--- _.------_-------_.--- -.-_ .-._---.-.._-----.--- 

PlUlMUitT- Arrktrius Eyring 
a-.-- - -_ -.__. - -_ --- -.__ .-_-.. .-.-._ --_ --..- _ --- 

G 8803 *28 T, 8534 5 23 
Z: (5.9 -- 1.4) - 10” P (SO A 1.6) - 1Of‘ 
Q 88-4 ; 28 Q 88.3 : 2.7 
k: (25%) o-OS9 fi 0.020 x-1 (1-S ‘C) 0.088 :f: 0.017 

* lk dimcnsiom arc mentioned below- Table 6. 

The advantage of using the Eyring type equation is the possibility of calculating 
the activation entropy of naction by the relation 

(32) 

whet-et k, = 1.3W662 - LO-” J K-’ 
h = 6.626176 - lO--34 J s- * 
R - X.31441 J mol-’ KC’ 

kB and /i are the constants of Boitzmann and Planck, rapcctively, Using for P the 
vafuc from Table 8 we find an activation entropy of 

AS= - 27.1 & 1.5 J mol-’ K-’ 

Although the method is very computer-time consuming the results are fairly good 
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compared with the literature. Long et aLz6 gave the following resulu (0.05 to O-2 
molair) 

7’, (Arrhenius) = 9392 22 = 2.12 - 1oa2 

T, (Eyring) = 9100 P = 2.66 - lo9 

k (25°C) = 0.044 Lls = - 17.1 

The dimensions are mentioned below Table 6. 

The present investigations are conducted with financial support from the 
Netherlands Or_ganiza!ion for the Advancement of Pure Rcscarch (Z.W.O., The 
Hague). 

The author wish= to thank Drs. W. Hofiinann for the cncounging discussions 

during Ihe development of the computer program. 

heat transfer surface area 
average specific heat capacity 
heat capacity 
energy of activation 
overall heat transfer coefficient 
pseudo reaction rate constant 
molalility of reaclion solution 
initial mo!alility of reaction solution 
reaction order 

frequency factor in the Eyring equation 
heat of reaction (positive for exothcrmic reactions) 
gas constant 
reaction rate 
reaction activation entropy 
time 
absolute temperature of reacting mixture 
initial temperature of reacting mixture 
activation energy tempcraturc 
ambient temperature 
maximum adiabatic reaction temperature 
heat of stirring 
frequency factor in the Arrhenius equation 
modified frequency factor 



APPESDixI 

The procedure described in -section 2 has the following heading with the 
meaning of the parameters given after that_ The procedure has the value of S(par) at 
the end of the calculations. 
real procedure parw[inde (npar. ndata, neqn, cobs& in, realin, ohs, par, partest. 

.- _. _m_.__. -_ 
c&-start, calldfdpar. callderiv. calljac, stiff, residu, invers, jac, out. 
outdz.tz+; 

value npar, ndata, nlcqn. cobsi. in. realin, partest. ohs; 

&Ger nparz ndata. neqn, cobsi; 

array in, realin, partwt, out, ohs, par, residu, invcrs, jac; 
-_-_* 
boolean stitfi .-- 
boolmn procedure calljac: 
--m-B.., - _._m.-- _ - 

procedure outdata_ ralidfdpar. calideriv, callystart; 
_-____ . 
The meaning of the formal parameters is 
np3r (arithmetic expression): the number of unknown parameters: 
ndata (arithmetic expression); the number of observations: ndata s 
neqn <arithmetic expression): the number of differential equations; 

npar; 

cobsi 
in 

<arithmetic expression); the component ofy observed (f <cobsi< neqn); 
(arny identifier) ; army in c&73: -.. 

erttrqr: in this array data should be given to control the 
proCXS: 

inlO]: machine precision; 
in[I]: the relative tolerance for the euclidian norm of 

the residual vcu;tor; 
inf2’J the absolute toIcnnce of the euclidian norm of 

the residual vector: 
inf3f: the maximum number of jacobian evaluations; 
in[4]: the factor alfa to calculate the starting value of 

Iamb& a suitable value is lWJ; 
in[5]: the reducing factor beta to reduce lambda, a 

suitable value is QS; 
in[6]: on the way change of integration precision if 

realin (array identifier) ; 

entry; 

array realin [1:67; 
_--_ 

in this army control data for the in%gratiort 
procedure should be given; 
starting value of the time; 
final value of the time; 
minimal integration step, a suitable value is 
realin[4]+ NY; 



ObS 

panest 

callystart 

caltdfdpar 

realin[4]: 

rcalin[S]: 

rcalin[d]: 
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maximal integration step, a suitable value is the 
time step between two observations: 
the initial relative local error bound for the 
integration, a suitable value is inI 1); 
if \\rcsidue\j K in[6] then the relative local error 
hound is equal to realin[6]. a suitable value is 
in~I)+lO-Z; 

identifier) ; array ohsI 1 :ndata, I sneqni I]; _- _ -_ 
entry: contains the experimental observations; 

ohs&j]: is equivalent with y-j]; 
obs[i,neqn -I- I]: is equivalent with time; 
identifier) ; array par[l:npar]; _ _-_ .- 

entry: startine vklues of the parameters; 
exit; the calculated parameters: 

idcnrifier) ; array partest[f :npar, 1:3 3; __ _._ .- 
entry: kformation about boundaries for the para- 

meters should be given; 
partest[i.Ij: lower bound of parameter i; 
partest[i.2]: new value of parameter i when boundary is 

crossed : 

parlcst[i,3]: upper bound of parameter i: 
<procedure identiher) ; procedure callystan (y, ynp, ymax); 

. . _ ___._ 
array y. ynp. ymax: _~. _ 

exit: y[I:6x neqn], y[ I] to y[neqnJ contains the 
starting values of y; 
ynplO:7. I :neqn ‘r; npar]. ynpi0, I] to ynp[CL 
neqn Y. npar] contains the starting values for the 
integration of dyp[dx: 
ymax[ I meqn]. ymax[i] should conlain an 
estimate of the absolute maximal value of y[iJ 
over the integration interval; 

(procedure identifier) ; procedure calldfdpar (dfdpar. par y, x); 
. . _ _ . _. _ _,. 

:,,’ , !: ; ‘; j 

entry: 

exit: 

array dfdpar. par, y; real x; ___-._- 
par[l :apar) corlfains ihe current values of the 
parameters; 
yrl:ncqn] contains the solution af the diffcr- 
cntial equation at time x; 
array dfdpar[ I :neqn, 1 :npar]. this array con- 
.-__-- 
tains the values dfdpar[ijJ := d(dy[i]/dx)/ 

d(pa$& 
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mllderiv 

Cdj3C 

stiff 

rcsidu 

itwers 

jac 

out 

<prwezJun identifier) ; procedure callderiv (df. par, y, x): --*_._ 
arrcry df, par. y; real x; 
-I- 

entry: see csllldfdpar; --- 
cxitr array d@I:nqn$ df[i]:- dy[ij/dx; 

(procedure identifier) ; Gn procedure cztJJjac (jztcobian. par, y, x); 
___cI _I_.__ __.__. 
array jacobian. par, y; rtzzl x; 
-.-- 

- entry: see caIJdfdJzw; 
exit: array jacobian [J:neqn. 1 :neqn]; 

jarobianf_i_j]: TS d(dy[i J!dx)/dyfi]; 
the boolean procedure should deliver the value 
true after a succ~sful all of calljac; 
.-.--a 

(bookn identifier> ; when we ant dealing with stiff Jiffcrenfial 
equation stiff should be true; _--. . 

(array identifier> ; array residuec I :ndata); 
- I, 

exit: r&du[I :ndata] cmtains the residue vector at 
the calculated minimum, residu~i~:= observed 
y[ij - calcuhred y[i]; 

(amy identifier) ; amy invers[ I :npar, I :npiwj; 
._. - . 

exit: the invers of J*f is stored in invers, this matrix 
is necessary to calculate the covariance and 
corretation matrices; 

(array idea.Gfier> ; arny jac[t Indata, I :npmJ; 
-___ 

exit: the matrix jac contr?ins the jacobian in the 
cakuhtcd minimum, jac&jJ: = d(r$i})/ 
drJ;l&& should be used by calculating the 
value of the gradient in the minimum; 

(amy identifier) array out fJr93: - - . 
divers by-products of the czkulations arc 
stored in thu array out; 

out[I]: the condition number of J*J; 
~423: the euclidian norm of the residual vector 

calculated in the minimum; 
outl31: rhe iJst improvement of the residual vector: 
out[4]: the euclidian norm wifh the starting values of 

the parameters; 
out[T]: the number of calls of procedure funct (eqn 2 

alone); 
ouc[63: the number of calls of the procedure jacobian 

(eqn 2 and 9); 
out[Tj -: 0 normal termination; 
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= I number of iterations to perform exceed 
in [S]; 

OUlf8.J 

out[9] 

outdata (proccdurc identifier) : 

exit: 

pointer 

poinccr 

pointer 

pointer 

arrayl- l] 
array[ -- I] 

= 2 t hc call ofjacobian delivers the value false; 
__--- 

;= 3 the first call ofjacobian delivers the value 
fa1sC: 
___ - - 
-J 4 the precision asked for cannot bc attainccl, 
reduce in[2]; 
- I a call of funct delivers the value false; 

__ _-- 
:-- I a call of the integration procedure delivers 
the value false; 

__- -_ 
procedure nutdata (pointer, intugcr, real I, 
. -._. - - m-0 
real 2, array): 
integer pointer, integer; ral real 1, real 2; 
_- _--. . _. . 
array array; _. __. 
this procedure can be used lo obtain informa- 
tion during the integration. There arc four 
places where output is activated; 
= 1 after a successful call of funct intqcr gives 
the number of calls. real I gives the used 
lambda. real 2 gives the value of S(par). array 
gives the used pzxameter array; 
z 2 aftcr’a successful call of jacohian integer. 
re.ztl I, real 2, array; xc pointer -= I; 
- 3 after a parameter bound jumps the 
rejected vaiue and its substitute integer is the 
number i of par[i] which is rejected. real I is the 
rejectccl value, real 2 is its substitute, array is 
the parameter array; 
7: 4 after a failure in the integration procedure 
the following information is avail&k, integer, 
rca! 1 aud real 2 arc zero. array contains the 
following; 
-I-- 0 no error mfzsag-3 available; 
- I minimal step length (s-c&-$3]) too great 
to handle the non-linearity; 

arrayI--23: number of local error bound exceedings: 
array[-31: if array[ -2-j # 0 this gives an estimate of the 

maximal local error: 
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